
 1

Towards Intelligent Assistance for To-Do Lists
Yolanda Gil and Varun Ratnakar
USC Information Sciences Institute

4676 Admiralty Way, Marina del Rey, CA 90292
{gil, varunr}@isi.edu

ABSTRACT
Assisting users with to-do lists presents new challenges for
intelligent user interfaces. This paper presents a detailed
analysis of to-do list entries jotted by users of a system that
automates tasks for users that we would like to extend to
assist users with their to-do entries. We also present four
distinct stages of interpretation of to-do entries that can be
accomplished and evaluated separately. A system that has
good performance in any of these four stages can provide
intelligent assistance that is useful to users.

Author Keywords
User interfaces, to-do lists, automated assistance, natural
language interpretation, knowledge acquisition, knowledge
collection from web volunteers, office assistants.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
To-do lists are ubiquitous, whether in our handheld
organizers or in traditional form as paper lists and sticky
notes. From a user perspective, to-do lists can be viewed as
“entry points” that suggest to the user to engage in the tasks
therein, often carrying information about deadlines and
importance level [9]. Studies have shown that to-do lists
are the most popular personal information management
tools (used more than calendars, contact lists, etc.), used by
more than 60% of people consulted about their usage of
personal information management [8]. To-do lists are
external artifacts that augment human cognition in that they
serve as memory enhancers by reminding people of what
needs to be done. Norman [12] points out that such
external artifacts often transform the tasks that users do into
new sets of tasks. He uses to-do lists to illustrate this,
pointing out that although they are indeed helpful as

memory enhancers they require that the user repeatedly
construct, consult, and interpret to-do entries. Norman
clearly views these as onerous additional tasks that do not
help the user with their original task entered into the list.

The focus of research to date on to-do lists has been on best
use practices, problems, and desiderata [2,1,7]. We see an
immense and largely unexplored opportunity for intelligent
assistance in automatically interpreting, managing,
automating, and in general assisting users with their to-do
lists. This opportunity presents important challenges to
intelligent user interface research.

Our initial work on providing intelligent assistance for to-
do list management is part of a larger project to develop
intelligent assistants for office-related tasks
(www.sri.com/calo). As part of this project, a plan
execution engine is available to us to act upon and to
monitor tasks for users [11] as well as a calendar
management system [3] and an instrumented desktop [5].
An important and novel aspect of this project is that the
system does not have a pre-defined set of tasks that it can
automate; rather, it is continuously learning autonomously
and from users (e.g., [13,10,4]). Therefore, users would
expect the to-do list manager to handle new tasks as they
are learned by the system. CALO includes an execution
and monitoring system that can be invoked through a user
interface called TOWEL [11]. TOWEL allows the user to
jot to-do lists, but does not take action on those to-dos.
TOWEL allows the user to invoke agents to perform a task
for them. To do that, it generates a form based on the
description of the task in the Task Ontology, and the user
fills the form to specify the arguments of the task. TOWEL
has no capability to automatically interpret the to-do entries
to select or fill these forms. Our goal is to provide this
capability.

We have discussed elsewhere that an intelligent to-do
system can provide a variety of assistance to users [6], not
only by acting on to-do list items, but also in monitoring
and notifying user on progress on to-do items, augmenting
the to-do list with related items, grouping and prioritizing
to-do entries, and coordinating to-do lists across users in an
organization.

We also discussed some of the challenges of interpreting to-
do entries, over and above existing approaches in speech
and dialogue systems that assist users with task-oriented

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IUI'08, January 13-16, 2008, Maspalomas, Gran Canaria, Spain.

Copyright 2008 ACM 978-1-59593-987-6/ 08/ 0001 $5.00

activities [6]. To-do entries are not input with the
sequencing or temporal dependencies found in a dialogue
system, and therefore must be considered individually and
interpreted before the system can infer any potential
relationships to other to-do entries. To-do entries are often
incomplete and often lack a verb, which makes them hard
to map onto the tasks that the system can automate. In
addition, many to-do entries in a list can be outside the
realm of the system’s automation abilities (such as personal
matters and tasks that can only be done by the user), while
dialogue systems can assume all user utterances are relevant
to the task. In other ways, processing to-do list entries is
less challenging than dialogue systems since there is no
need to keep track of the dialogue history and overall
context, and the to-do entries tend to be brief and therefore
there is less need for complex grammatical rules.

In this paper, we present an analysis of a corpus of to-do
entries collected from users of the CALO system. We then
break down the interpretation of to-do list entries as four
related activities that can be independently evaluated and
each has added value for the user. We end with a
discussion on prospects and planned research.

CORPUS ANALYSIS OF TO-DO LIST ENTRIES
We set up a logging system to collect to-do entries jotted by
CALO users. This section discusses our analysis of these
entries, which illustrates the challenges in developing
interpretation and automation aids for to-do lists.

We collected a corpus of 1200 to-do list entries from a
dozen users of the CALO system over a period of several
months. These users entered to-do list items through the
TOWEL interface, where they could drag URLs and
documents to the to-do list or enter textual items. We
created a reference corpus of 300 entries each by random
selection from the original corpus. The other 900 entries
were set aside as a test corpus. We analyzed the reference
set and report here salient properties of the to-do lists
collected. When providing examples throughout this paper,
we created fictional to-do entries to protect the privacy of
our users.

Of the 300 entries of the reference corpus, 14% had the
potential to be automated by CALO. This seemed to be a
relatively small number, so as a comparison point we took
an informal poll of how many email messages were sent to
project assistants versus to others. We asked two users
whose primary means of interaction with their (human)
project assistants was email to count what proportion of
their outgoing emails over a period of three months was
sent to their project assistants. The proportion was 4% and
3% respectively. Of the to-do entries with automation
potential, 9% of the entries could be mapped to a target task
to send email. 3.5% of all entries could be mapped to a
target task concerning scheduling. The remainder were
concerned with planning travel and planning a visit.

The remaining entries of the reference corpus, 86%, could
not be automated and seem to serve instead as reminders to
the user, such as to-do entries for writing documents, fixing
coding bugs, and a number of URLs. In our particular
reference set, many had to do with programming tasks,
which CALO is not intended to automate. Others used very
project-specific terms to refer to documents, or system
components, or topics, etc. that would be hard to interpret
without more context about the user. In future work, this
context could be obtained from CALO’s instrumented
desktop [5]. Nevertheless, this is an interesting category
because it can be used as candidates for the system to
extend its capabilities and automate those tasks through
learning [13,10,4].

67% of the entries did not begin with a verb. A few
additional entries had the head verb stated as a gerund,
others had a verb but in the later part of the entry. This
makes the interpretation task more challenging, since these
entries are harder to anchor to a task by looking and the
synonyms of the head verb.

We also found unexpected to-do entry structures, such as
entries stated as question statements (2%), entries with
abbreviations of tasks (1%), and erroneous entries
containing typos or interrupted entries (4%).

Because we were interested in automation, we looked more
closely at the entries that could be automated. As we
mentioned, these were 14% of the corpus. Of those, 56%
did not specify at least one argument of the task. 7% had
no arguments at all specified. Of the 44% that had all the
arguments specified in some form, the specification was
very ambiguous. For example, “Meet with Joe” specifies
that the person to meet with is “Joe”, but there may be no
object in the system with an ID of “Joe” but rather 8 or 9
different people IDs registered in the system whose first
name is “Joseph” and of those perhaps only one works
closely with the user and with that context the interpretation
would be ambiguous. Similarly, an entry “Discuss
requirements with group” may prompt a task to schedule a
meeting, but what the user means by “group” is not simply
a language processing task because it also requires context.
Some entries referred to a person indirectly, for example
“Tell John Smith’s boss about the purchasing delay”. Other
entries referred to specific groups of people using the name
of their institution, such as “Tell ISI folks about the new
TOWEL features”. None of the to-do entries contained
enough information to perform a mapping to the arguments
without using information about the user context.

Of these entries that could be automated, only 7% had no
verb. The rest all started with a verb, though one had an
abbreviation of a verb (“sched wed 15th ISI”). This is very
disproportionate compared to the 67% of the total entries.
However, we hypothesize that verbs are easier to state when
tasks are more concrete and could be automated, as it was
with this subset. For tasks that are more abstract and
longer-lived, such as “IUI paper”, many activities may be

 3

involved and verbs may be less appropriate or even more
challenging to come by while jotting the entry.

This corpus analysis highlights some of the challenges that
we face in interpreting and automating to-do entries.

INTERPRETING TO-DO LISTS
Interpreting to-do entries involves mapping the user
statement in natural language into the formal advertisement
of the capability of some agent in the system. For example,
a to-do entry stated by the user as:

“Set up discussion on IUI paper”

could be automated by a calendar scheduling agent. The
advertisement of this capability may be advertised
internally in the system as:

<Task name=”ScheduleMeeting”>
 <agent>CalendarAgent</agent>
 <input-arguments>

<arg-p type=”attendees”/>
<arg-t type= “timeframe”/>
<arg-s type= “topic”/>

 </input-arguments>
 <output-arguments>

<arg-m
 type=”calendar-entry”/>

 </ output -arguments>
 </Task>

which we will refer to in abbreviated form as:
ScheduleMeeting +person +timeframe +topic

Note that we assume that each task has a name and a set of
arguments. The arguments can be input arguments, which
must be provided in order for the agent to automate the
task, and output arguments, which are values that the agent
returns upon completion of the task. The system internally
manages additional information that is not reflected in these
advertised capabilities, such as detect failure conditions,
invoke other agents to perform subtasks or to negotiate
accommodations (eg changes to an already fully-scheduled
day to accommodate a hard to schedule meeting), and
request specific interventions from the user.

Interpreting a to-do entry involves four activities:

1) Identification: Identifying to-do entries that can
be mapped to tasks represented in the Task
Ontology

2) Selection: Selecting one or more tasks in the Task
Ontology that could be used to automate the to-do
entry

3) Association: Associating portions of the to-do-list
entry that can be mapped to arguments of a given
task in the Task Ontology

4) Interpretation: Interpreting the to-do list entry
by creating formal objects for the arguments

Identification involves determining whether a to-do entry is
within the scope of what the system can automate, i.e.,
whether the agents have advertised capabilities that are
relevant to accomplishing the user’s entry. Some examples
of successful identification include

“Set up discussion on IUI paper” -> Yes
“Set up salary review with John” -> Yes
“Set up doctor’s appointment” -> No
“Meet Paul on Friday” -> Yes
“Meet UCLA visitors on Friday” -> Yes

Notice that for this task the system does not need to be able
to discriminate among tasks in the Task Ontology, only
detect that there is at least one relevant task. For example,
the last item may map to a ScheduleMeeting task or to a
RescheduleMeeting task if there is already a meeting with
Paul scheduled before that Friday.

Selection involves determining which task in the Task
Ontology is an appropriate capability for the system to
accomplish the to-do entry. For example:

“Set up discussion on IUI paper” -> ScheduleMeeting
“Set up salary review with John” -> ScheduleMeeting
“Set up doctor’s appointment” -> NULL
“Meet Paul” -> ScheduleMeeting

Association involves mapping subportions of the to-do
entry to appropriate arguments specified for the task in the
Task Ontology when appropriate. For example:

“Set up discussion on IUI paper”
 -> ScheduleMeeting
 -> topic = “IUI paper”
“Set up discussion with John”
 -> ScheduleMeeting
 -> attendees = “John”

Interpretation involves identifying objects in the ontology
that correspond to the entities mentioned in the to-do entry.
Some of the arguments of the task may not have any
corresponding objects in the ontology and are left as they
were associated to the task representation. For example:

 “Set up IUI paper discussion with Jon Smith”
 -> ScheduleMeeting
 -> attendees = calo:Jonathan-F-Smith
 -> topic = “IUI paper discussion”

Notice that for each of these four activities the system could
generate more than one candidate answer, as well as some
indication of confidence. The four activities need not be
separate and may be interleaved. The user would ultimately
be presented with a set of interpretation choices for a given
to-do entry. For example:
Suggestion #1:
 Mapping: scheduleMeeting +person +timeperiod +topic
 Bindings: [<topic> = “IUI paper”]
 Confidence: .89
Suggestion #2:
 Mapping: scheduleMeeting +person +timeperiod +topic
 Bindings: [<person> = “IUI paper”]
 Confidence: .67
 Suggestion #3:
 Mapping: rescheduleMeeting +person +timeperiod +topic
 Bindings: [<topic> = “IUI paper”]
 Confidence: .20
Suggestion #4:
 Mapping: schedule +visitor
 Bindings: [<visitor> = “IUI paper”]
 Confidence: .05

Ideally the user would always get the correct choice shown
to him or her in the interface, and therefore of particular
interest is the precision and recall for the top choice
presented to the user. By default the system should show
the user only the highest ranked suggestion, only show the
next k highest ranked suggestions upon user request. A
user may look at a small number of options (anywhere from
k=3 to k=10 may be a manageable set depending on the
user’s gain) in training/learning mode to provide feedback
to CALO so the system can improve its performance
overtime. But for normal use, ideally only the top
suggestion (k=1) would be seen by the user.

It is important to note that good performance in
identification and selection is already useful to the user.
Identification enables the system to highlight the tasks that
are relevant to the office assistant, so the user can then
select the appropriate form and fill it up. Selection enables
the system to go one step further and suggest the
appropriate form to be filled. Association would enable the
system to fill some of the arguments automatically.
Interpretation would result in more arguments being
automatically filled. But assisting with to-do lists does not
stop here. The system would want to be capable of
Completion to fill the whole form automatically, by
exploiting the user’s context and history to learn to make
educated guesses about how the user needs or prefers tasks
to be accomplished. In addition, the system would ideally
decide on Invocation, by making an educated guess on
whether it should confirm with the user whether to go ahead
and perform the task or simply proceed without consulting
the user.

CONCLUSIONS
Assisting users with to-do lists is a new and challenging
research area for intelligent user interfaces. In this paper,
we presented an analysis of a large corpus of to-do entries
with respect to the potential and challenges for automation
of those entries. We also presented a breakdown of the
interpretation process of a to-do entry into four related but
independent stages. Even if full interpretation is not
achieved, a system for to-do list management that addresses
some of these stages may provide useful assistance to a user
in managing to-do lists.

ACKNOWLEDGMENTS
We gratefully acknowledge funding for this work by
DARPA under contract no. NBCHD030010. We thank Tim
Chklovski for many useful discussions in the early stages of
this work. We also thank Karen Myers and Ken Conley for
their feedback on this work and its integration with CALO.

REFERENCES
1. Bellotti, V.; Ducheneaut, N.; Howard, M., Smith, I.

Taking email to task: the design and evaluation of a task
management centered email tool. ACM Conference on
Human Factors in Computing Systems (CHI), 2003.

2. Bellotti, V., B. Dalal, N. Good, P. Flynn, D. Bobrow, N.
Ducheneaut. What a To-do: Studies of Task
Management Towards the Design of a Personal Task
List Manager. ACM Conference on Human Factors in
Computing Systems (CHI), 2004.

3. Berry, P.; Conley, K.; Gervasio, M.; Peintner, B.; Uribe,
T.; and Yorke-Smith, N. Deploying a Personalized Time
Management Agent. Proceedings of AAMAS'06
Industrial Track, Hakodate, Japan, May 2006.

4. Blythe, J. Task Learning by Instruction in Tailor.
In Proc. of Intelligent User Interfaces (IUI-2005), 2005

5. Cheyer, A. and Park, J. and Giuli, R. IRIS: Integrate.
Relate. Infer. Share. 1st Workshop on The Semantic
Desktop. 4th Intl Semantic Web Conference. 2005.

6. Gil, Y. and Chklovski, T. Enhancing Interaction with
To-Do Lists Using Artificial Assistants. AAAI Spring
Symposium on Interaction Challenges for Artificial
Assistants, Stanford, CA, March 26-28, 2007.

7. Hayes, G., Pierce, J. S., and Abowd, G. D. Practices for
Capturing Short Important Thoughts. ACM Conference
on Human Factors in Computing Systems (CHI), 2003.

8. Jones, S. R. and P. J. Thomas. “Empirical assessment of
individuals personal information management systems.”
Behaviour & Information Technology 16(3), 1997.

9. Kirsh, D. “The Context of Work”, Human Computer
Interaction, Vol 16, 2001.

10. Mitchell, T., Wang, S., Huang, Y., and Cheyer, A.
Extracting Knowledge about Users' Activities from Raw
Workstation Contents. The Twenty-First National
Conference on Artificial Intelligence (AAAI ’06), 2006.

11. Myers, K., P. Berry, J. Blythe, K. Conley, M.
Gervasio, D. McGuinness, D. Morley, A. Pfeffer, M.
Pollack, and M. Tambe. An Intelligent Personal
Assistant for Task and Time Management. AI Magazine,
28(2), 2007.

12. Norman, D. A. Cognitive artifacts. In J. Carroll, editor,
Designing Interaction: Psychology at the Human-
Computer Interface, pages 17--38. Cambridge
University Press, New York, NY, USA, 1991.

13. Shen, J., Li, L., Dietterich, T., Herlocker, J. (2006). A
Hybrid Learning System for Recognizing User Tasks
from Desktop Activities and Email Messages. In 2006
International Conference on Intelligent User Interfaces
(IUI). 86-92. Sydney, Australia.

