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ABSTRACT 
Assisting users with to-do lists presents new challenges for 
intelligent user interfaces. This paper presents a detailed 
analysis of to-do list entries jotted by users of a system that 
automates tasks for users that we would like to extend to 
assist users with their to-do entries.  We also present four 
distinct stages of interpretation of to-do entries that can be 
accomplished and evaluated separately. A system that has 
good performance in any of these four stages can provide 
intelligent assistance that is useful to users. 
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INTRODUCTION 
To-do lists are ubiquitous, whether in our handheld 
organizers or in traditional form as paper lists and sticky 
notes.  From a user perspective, to-do lists can be viewed as 
“entry points” that suggest to the user to engage in the tasks 
therein, often carrying information about deadlines and 
importance level [9].  Studies have shown that to-do lists 
are the most popular personal information management 
tools (used more than calendars, contact lists, etc.), used by 
more than 60% of people consulted about their usage of 
personal information management [8].  To-do lists are 
external artifacts that augment human cognition in that they 
serve as memory enhancers by reminding people of what 
needs to be done.  Norman [12] points out that such 
external artifacts often transform the tasks that users do into 
new sets of tasks.  He uses to-do lists to illustrate this, 
pointing out that although they are indeed helpful as 

memory enhancers they require that the user repeatedly 
construct, consult, and interpret to-do entries.  Norman 
clearly views these as onerous additional tasks that do not 
help the user with their original task entered into the list.   

The focus of research to date on to-do lists has been on best 
use practices, problems, and desiderata [2,1,7].  We see an 
immense and largely unexplored opportunity for intelligent 
assistance in automatically interpreting, managing, 
automating, and in general assisting users with their to-do 
lists.  This opportunity presents important challenges to 
intelligent user interface research.   

Our initial work on providing intelligent assistance for to-
do list management is part of a larger project to develop 
intelligent assistants for office-related tasks 
(www.sri.com/calo).  As part of this project, a plan 
execution engine is available to us to act upon and to 
monitor tasks for users [11] as well as a calendar 
management system [3] and an instrumented desktop [5].  
An important and novel aspect of this project is that the 
system does not have a pre-defined set of tasks that it can 
automate; rather, it is continuously learning autonomously 
and from users (e.g., [13,10,4]).  Therefore, users would 
expect the to-do list manager to handle new tasks as they 
are learned by the system.  CALO includes an execution 
and monitoring system that can be invoked through a user 
interface called TOWEL [11].  TOWEL allows the user to 
jot to-do lists, but does not take action on those to-dos.  
TOWEL allows the user to invoke agents to perform a task 
for them.  To do that, it generates a form based on the 
description of the task in the Task Ontology, and the user 
fills the form to specify the arguments of the task. TOWEL 
has no capability to automatically interpret the to-do entries 
to select or fill these forms.  Our goal is to provide this 
capability. 

We have discussed elsewhere that an intelligent to-do 
system can provide a variety of assistance to users [6], not 
only by acting on to-do list items, but also in monitoring 
and notifying user on progress on to-do items, augmenting 
the to-do list with related items, grouping and prioritizing 
to-do entries, and coordinating to-do lists across users in an 
organization.   

We also discussed some of the challenges of interpreting to-
do entries, over and above existing approaches in speech 
and dialogue systems that assist users with task-oriented 
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activities [6].  To-do entries are not input with the 
sequencing or temporal dependencies found in a dialogue 
system, and therefore must be considered individually and 
interpreted before the system can infer any potential 
relationships to other to-do entries.  To-do entries are often 
incomplete and often lack a verb, which makes them hard 
to map onto the tasks that the system can automate.  In 
addition, many to-do entries in a list can be outside the 
realm of the system’s automation abilities (such as personal 
matters and tasks that can only be done by the user), while 
dialogue systems can assume all user utterances are relevant 
to the task.  In other ways, processing to-do list entries is 
less challenging than dialogue systems since there is no 
need to keep track of the dialogue history and overall 
context, and the to-do entries tend to be brief and therefore 
there is less need for complex grammatical rules. 

In this paper, we present an analysis of a corpus of to-do 
entries collected from users of the CALO system.  We then 
break down the interpretation of to-do list entries as four 
related activities that can be independently evaluated and 
each has added value for the user.  We end with a 
discussion on prospects and planned research. 

CORPUS ANALYSIS OF TO-DO LIST ENTRIES 
We set up a logging system to collect to-do entries jotted by 
CALO users.  This section discusses our analysis of these 
entries, which illustrates the challenges in developing 
interpretation and automation aids for to-do lists. 

We collected a corpus of 1200 to-do list entries from a 
dozen users of the CALO system over a period of several 
months.  These users entered to-do list items through the 
TOWEL interface, where they could drag URLs and 
documents to the to-do list or enter textual items. We 
created a reference corpus of 300 entries each by random 
selection from the original corpus.  The other 900 entries 
were set aside as a test corpus.  We analyzed the reference 
set and report here salient properties of the to-do lists 
collected.  When providing examples throughout this paper, 
we created fictional to-do entries to protect the privacy of 
our users. 

Of the 300 entries of the reference corpus, 14% had the 
potential to be automated by CALO.  This seemed to be a 
relatively small number, so as a comparison point we took 
an informal poll of how many email messages were sent to 
project assistants versus to others.  We asked two users 
whose primary means of interaction with their (human) 
project assistants was email to count what proportion of 
their outgoing emails over a period of three months was 
sent to their project assistants.   The proportion was 4% and 
3% respectively.  Of the to-do entries with automation 
potential, 9% of the entries could be mapped to a target task 
to send email.  3.5% of all entries could be mapped to a 
target task concerning scheduling.  The remainder were 
concerned with planning travel and planning a visit.   

The remaining entries of the reference corpus, 86%, could 
not be automated and seem to serve instead as reminders to 
the user, such as to-do entries for writing documents, fixing 
coding bugs, and a number of URLs. In our particular 
reference set, many had to do with programming tasks, 
which CALO is not intended to automate.  Others used very 
project-specific terms to refer to documents, or system 
components, or topics, etc. that would be hard to interpret 
without more context about the user.  In future work, this 
context could be obtained from CALO’s instrumented 
desktop [5]. Nevertheless, this is an interesting category 
because it can be used as candidates for the system to 
extend its capabilities and automate those tasks through 
learning [13,10,4]. 

67% of the entries did not begin with a verb.  A few 
additional entries had the head verb stated as a gerund, 
others had a verb but in the later part of the entry.  This 
makes the interpretation task more challenging, since these 
entries are harder to anchor to a task by looking and the 
synonyms of the head verb.   

We also found unexpected to-do entry structures, such as 
entries stated as question statements (2%), entries with 
abbreviations of tasks (1%), and erroneous entries 
containing typos or interrupted entries (4%). 

Because we were interested in automation, we looked more 
closely at the entries that could be automated.  As we 
mentioned, these were 14% of the corpus.  Of those, 56% 
did not specify at least one argument of the task.  7% had 
no arguments at all specified.  Of the 44% that had all the 
arguments specified in some form, the specification was 
very ambiguous.  For example, “Meet with Joe” specifies 
that the person to meet with is “Joe”, but there may be no 
object in the system with an ID of “Joe” but rather 8 or 9 
different people IDs registered in the system whose first 
name is “Joseph” and of those perhaps only one works 
closely with the user and with that context the interpretation 
would be ambiguous.  Similarly, an entry “Discuss 
requirements with group” may prompt a task to schedule a 
meeting, but what the user means by “group” is not simply 
a language processing task because it also requires context. 
Some entries referred to a person indirectly, for example 
“Tell John Smith’s boss about the purchasing delay”.  Other 
entries referred to specific groups of people using the name 
of their institution, such as “Tell ISI folks about the new 
TOWEL features”.  None of the to-do entries contained 
enough information to perform a mapping to the arguments 
without using information about the user context. 

Of these entries that could be automated, only 7% had no 
verb.  The rest all started with a verb, though one had an 
abbreviation of a verb (“sched wed 15th ISI”).  This is very 
disproportionate compared to the 67% of the total entries.  
However, we hypothesize that verbs are easier to state when 
tasks are more concrete and could be automated, as it was 
with this subset.  For tasks that are more abstract and 
longer-lived, such as “IUI paper”, many activities may be 
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involved and verbs may be less appropriate or even more 
challenging to come by while jotting the entry. 

This corpus analysis highlights some of the challenges that 
we face in interpreting and automating to-do entries.   

INTERPRETING TO-DO LISTS  
Interpreting to-do entries involves mapping the user 
statement in natural language into the formal advertisement 
of the capability of some agent in the system.  For example, 
a to-do entry stated by the user as: 

“Set up discussion on IUI paper”  

could be automated by a calendar scheduling agent.  The 
advertisement of this capability may be advertised 
internally in the system as:   

<Task name=”ScheduleMeeting”> 
 <agent>CalendarAgent</agent> 
 <input-arguments> 

<arg-p type=”attendees”/> 
<arg-t type= “timeframe”/> 
<arg-s type= “topic”/> 

 </input-arguments> 
 <output-arguments> 

<arg-m  
    type=”calendar-entry”/> 

 </ output -arguments> 
              </Task> 

which we will refer to in abbreviated form as: 
ScheduleMeeting +person +timeframe +topic 

Note that we assume that each task has a name and a set of 
arguments.  The arguments can be input arguments, which 
must be provided in order for the agent to automate the 
task, and output arguments, which are values that the agent 
returns upon completion of the task.  The system internally 
manages additional information that is not reflected in these 
advertised capabilities, such as detect failure conditions, 
invoke other agents to perform subtasks or to negotiate 
accommodations (eg changes to an already fully-scheduled 
day to accommodate a hard to schedule meeting), and 
request specific interventions from the user.   

Interpreting a to-do entry involves four activities: 

1) Identification:  Identifying to-do entries that can 
be mapped to tasks represented in the Task 
Ontology 

2) Selection: Selecting one or more tasks in the Task 
Ontology that could be used to automate the to-do 
entry 

3) Association:  Associating portions of the to-do-list 
entry that can be mapped to arguments of a given 
task in the Task Ontology 

4) Interpretation:  Interpreting the to-do list entry 
by creating formal objects for the arguments 

Identification involves determining whether a to-do entry is 
within the scope of what the system can automate, i.e., 
whether the agents have advertised capabilities that are 
relevant to accomplishing the user’s entry.  Some examples 
of successful identification include  

“Set up discussion on IUI paper” -> Yes 
“Set up salary review with John” -> Yes 
“Set up doctor’s appointment” -> No 
“Meet Paul on Friday” -> Yes 
“Meet UCLA visitors on Friday” -> Yes 

Notice that for this task the system does not need to be able 
to discriminate among tasks in the Task Ontology, only 
detect that there is at least one relevant task.  For example, 
the last item may map to a ScheduleMeeting task or to a 
RescheduleMeeting task if there is already a meeting with 
Paul scheduled before that Friday.  

Selection involves determining which task in the Task 
Ontology is an appropriate capability for the system to 
accomplish the to-do entry.  For example: 

“Set up discussion on IUI paper” -> ScheduleMeeting 
“Set up salary review with John” -> ScheduleMeeting 
“Set up doctor’s appointment” -> NULL 
“Meet Paul” -> ScheduleMeeting 

Association involves mapping subportions of the to-do 
entry to appropriate arguments specified for the task in the 
Task Ontology when appropriate.  For example: 

“Set up discussion on IUI paper”  
       -> ScheduleMeeting 
        -> topic = “IUI paper” 
“Set up discussion with John”  
       -> ScheduleMeeting 
        -> attendees = “John” 

Interpretation involves identifying objects in the ontology 
that correspond to the entities mentioned in the to-do entry.  
Some of the arguments of the task may not have any 
corresponding objects in the ontology and are left as they 
were associated to the task representation.  For example: 

 “Set up IUI paper discussion with Jon Smith”  
       -> ScheduleMeeting 
        -> attendees = calo:Jonathan-F-Smith 
        -> topic = “IUI paper discussion” 

Notice that for each of these four activities the system could 
generate more than one candidate answer, as well as some 
indication of confidence. The four activities need not be 
separate and may be interleaved.  The user would ultimately 
be presented with a set of interpretation choices for a given 
to-do entry.  For example: 
Suggestion #1:  
      Mapping:  scheduleMeeting  +person  +timeperiod  +topic 
      Bindings: [<topic> = “IUI paper”] 
      Confidence: .89  
Suggestion #2:  
      Mapping: scheduleMeeting  +person  +timeperiod  +topic 
      Bindings: [<person> = “IUI paper”] 
      Confidence: .67 
 Suggestion #3:  
       Mapping:  rescheduleMeeting +person  +timeperiod  +topic 
       Bindings: [<topic> = “IUI paper”] 
       Confidence: .20 
Suggestion #4:  
      Mapping:  schedule +visitor 
      Bindings: [<visitor> = “IUI paper”] 
      Confidence: .05 



 

Ideally the user would always get the correct choice shown 
to him or her in the interface, and therefore of particular 
interest is the precision and recall for the top choice 
presented to the user.  By default the system should show 
the user only the highest ranked suggestion, only show the 
next k highest ranked suggestions upon user request.  A 
user may look at a small number of options (anywhere from 
k=3 to k=10 may be a manageable set depending on the 
user’s gain) in training/learning mode to provide feedback 
to CALO so the system can improve its performance 
overtime.  But for normal use, ideally only the top 
suggestion (k=1) would be seen by the user. 

It is important to note that good performance in 
identification and selection is already useful to the user.  
Identification enables the system to highlight the tasks that 
are relevant to the office assistant, so the user can then 
select the appropriate form and fill it up.  Selection enables 
the system to go one step further and suggest the 
appropriate form to be filled.  Association would enable the 
system to fill some of the arguments automatically.  
Interpretation would result in more arguments being 
automatically filled.  But assisting with to-do lists does not 
stop here. The system would want to be capable of 
Completion to fill the whole form automatically, by 
exploiting the user’s context and history to learn to make 
educated guesses about how the user needs or prefers tasks 
to be accomplished.  In addition, the system would ideally 
decide on Invocation, by making an educated guess on 
whether it should confirm with the user whether to go ahead 
and perform the task or simply proceed without consulting 
the user.   

CONCLUSIONS  
Assisting users with to-do lists is a new and challenging 
research area for intelligent user interfaces.  In this paper, 
we presented an analysis of a large corpus of to-do entries 
with respect to the potential and challenges for automation 
of those entries. We also presented a breakdown of the 
interpretation process of a to-do entry into four related but 
independent stages.  Even if full interpretation is not 
achieved, a system for to-do list management that addresses 
some of these stages may provide useful assistance to a user 
in managing to-do lists.  
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